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Using the optical Kerr effect in nonlinear coupled mode theory, the occurrence of optical multistablity has been analytically 
investigated in nonlinear fiber Bragg grating for a quasi-CW laser beam. The expression for the transmittivity is obtained in 
nonlinear regime. It is observed that multi stable features occur near the stopband when operating wavelength is chosen in 
the vicinity and inside the stopband of the Bragg grating. The effect of intensity of the incident light and detuning wavelength 
on the multistable features of fiber Bragg grating is also studied in the present work. 
 

(Received March 9, 2011; accepted February 20, 2012) 

 

Keywords: Optical bistability, Multistability, fiber Bragg grating, Nonlinear coupled mode equations, Kerr nonlinearity 

 

 

 

1. Introduction 

 
The study of optical bistability is one of the most 

important areas of research in nonlinear optics due to its 

potential applications in all-optical computing and optical 

signal processing. Optical bistability (OB) characterizes as 

an optical system which exhibits two possible output 

intensities for the same input intensity. Such bistable 

devices have extensive interesting applications such as 

optical transistor, differential amplifier, optical switch, 

optical limiters, optical clipper, optical discriminator and 

optical memory elements. The principle of optical 

bistability was first put forward by Szoke et al [1] 

suggesting that bistability would occur at exact resonance 

if a Fabry-Perot resonator is filled with a saturable 

absorber in which the absorption coefficient is a 

decreasing function of local intensity. Later on McCall [2] 

numerically proved that under suitable conditions the same 

system can show differential gain with transistor action. 

The result of this work was experimentally demonstrated 

by Gibbs et al [3] using Na vapor filled Fabry-Perot cavity. 

Almost simultaneously, Felber and Marburger [4] gave the 

simplest explanation of dispersive optical bistability in a 

Fabry-Perot resonator where the optical cavity is filled 

with a material whose refractive index is intensity 

dependent.  Smith et al [5] demonstrated that if a Fabry-

Perot resonator contains an electro-optic element then 

multistability can be observed instead of bistability which 

has vital role in multilevel optical logic and many state 

optical memory operations. Later on Okada and Takizawa 

[6] examined theoretically and experimentally optical 

multistable characteristics in mirrorless electro-optic 

device. Miller et al [7] demonstrated optical bistability, 

multistability, differential gain, limiter and optical 

transistor in semiconductor InSb Fabry-Perot devices. Lee 

et al [8] experimentally realized hybrid optical 

multistability using a semiconductor light emitting device, 

a photodiode and transistor, where they presented 

graphical solution as well as a stability analysis to explain 

the occurrence of optical multistability. 

The optical bistability and multistability of periodic 

media in the form of distributed feedback structure in 

integrated optics was first investigated by H. G. Winful et 

al. in 1979 using III-V semiconductor material [9]. 

Another theoretical demonstration of optical bistability in 

semiconductor periodic structure was reported by He and 

Cada [10], where they have calculated for the first time 

nonlinear reflectivity spectrum and obtained large OB in 

the vicinity of its stopband due to the optical resonance 

effect. Herbert and Malcuit [11] described first 

experimental observation of optical bistability and 

multistability in nonlinear periodic structure.  

 The multilevel optical logic operations based on 

multistability is important to reduce complexity of devices 

and interconnections since it increases the information 

capacity of each line and each storage element in a optical 

communication system as compared to the binary logic 

operations. The opportunities provided by fiber Bragg 

grating are of enormous importance for further 

development of fiber optic communication systems [12]. 

The nonlinear nature of the grating allows dynamic tuning 

of the band gap, the study of optical bistability and 

multistability in FBG has been of considerable 

significance in recent days. Wabnitz [13] analyzed 

numerically the nonlinear propagation of 

counterpropagating pulses in a nonlinear fiber Bragg 

grating and discussed bistable switching of intense optical 

pulses. Broderick [14] presented theoretically and 

numerically all-optical switching characteristics in 

nonlinear fiber Bragg grating using cross phase 

modulation. Melloni et al [15] demonstrated 

experimentally all-optical switching phenomena in phase 

shifted FBG based on a cross phase modulation induced 

by an intense pump pulse on a low intensity probe. Ogusu 

and Kamizono [16] investigated the effect of the material 

response time on optical bistability in a nonlinear fiber 
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Bragg grating and found that switch-on time depends on 

the material response time and the switch-off time is 

almost independent of it. Lee and Agrawal [17] considered 

both the uniform and phase shifted grating and compared 

their performance numerically as a nonlinear switch when 

optical pulses are sent to the grating. Recently, Yosia et al. 

[18] have observed double optical bistability in nonlinear 

π-phase shifted chalcogenide fiber Bragg grating (c-FBG) 

and suggested all optical transistor operation in such 

device.   

 In the present work, we have studied analytically the 

phenomena of optical multistability in fiber Bragg grating 

using coupled mode theory. We have solved nonlinear 

coupled mode equations (NLCMEs) in a simplest way and 

obtained the solutions for forward and backward 

propagating field amplitudes. The expression for 

transmittivity of fiber Bragg grating for a quasi-CW laser 

beam is obtained and optical multistability behavior is 

studied. The numerical results based on our analysis show 

that the multistable phenomenon is strongly dependent 

upon the applied input electric field intensity as well as on 

the wavelength of the incident light.  

 

 

2. Theoretical model 
 

A fiber Bragg grating couples forward and backward 

propagating waves with wavelength λ close to the Bragg 

wavelength λB. We have assumed that Bragg grating have 

Kerr type response so that the nonlinear refractive index is 

given by  
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where 
effn  is the average refractive index of the grating, 

2n  is the  Kerr coefficient and )(zng
 is the periodic 

index variation and E  is the electric field propagating 

inside the grating and is written as [12] 
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Here, 
fA and 

bA are the amplitudes of the forward and 

backward propagating waves, respectively and  /B
 is 

the Bragg wave number. Using standard assumptions of a 

slowly-varying envelope approximation, we have used the 

following pair of NLCMEs [12]:  
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Here, δ, κ and γ are detuning parameter, linear coupling 

coefficient and nonlinear coefficient, respectively, and are 

defined as  
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In the following analysis we have solved the above 

NLCMEs analytically by neglecting higher order terms of 

backward propagating mode and solutions are obtained as 

[19] 
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Here, 22

0 bf AAI  is the input intensity at Bragg 

wavelength λB and qnl is the nonlinear dispersion relation 

in nonlinear Kerr regime and is defined as  
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where ))(( 2/122  q is the linear dispersion parameter 

and parameters X and Y are defined as 
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In the presence of Kerr nonlinearity the photonic band gap 

becomes ,1

2/1

2



 









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purely imaginary and most of the incident field will be 

reflected due to the fact that the grating will not support 

the propagating wave. It is clear from expression of 

nonlinear photonic band gap that the intensity of the input 

beam modifies the dispersion parameter and such 

modification affects the reflection and transmission 

characteristics of the grating. On substituting parameter qnl 

in equations (5) and (6), the fields of forward and 

backward propagating modes take the form  
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Here, 
nlt  is the effective transmission coefficient in 

nonlinear regime and is found as 
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Applying the proper boundary conditions, the nonlinear 

transmission coefficient  
ngt  for a grating of length L has 

been obtained by using equations (9) to (11) as  
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The corresponding expression for the transmittivity 

 2

ngng tT   in the nonlinear regime is  
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With 2/kL . It is interesting to compare the 

transmittivity of nonlinear fiber Bragg grating obtained in 

Equation (13) with tranmittivity ( ) of standard 

electrooptic nonlinear Fabry-Perot device obtained by 

Smith et al in 1978 [7] as  
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A comparison of Equation (13) and (14) shows that 

the FBG is equivalent to an optical resonator with mirror 

reflectivity (transmissivity) 22R  22)1(  RT  

and phase shift 2/kL .  

 

 

3. Results and discussions 
 

On the basis of the theoretical formulations developed 

in the preceding sections (Equation 13), we have 

demonstrated the optical multistability behavior of fiber 

Bragg grating in nonlinear Kerr regime by plotting the 

transmitted intensity with input intensity in Fig. 1. The 

tunable quasi-CW laser source in C-band (1535 – 1565 

nm) is assumed as the light source. It may be noted here 

that a similar order of magnitude of the pump intensity 

was considered by Lee and Agrawal [17] to be obtained 

from a quasi CW-laser of 1 ns pulse duration. Also, 

Taverner et al [20] used a quasi-CW Diode-seeded LA-

EDFA chain radiation source at 1536 nm in their 

experimental work to demonstrate all-optical AND gate in 

an apodized FBG. All the results presented here are for 

chalcogenide FBG having effective index 
effn = 2.45, 

change in grating index ng = 3×10
-4

, nonlinear Kerr 

coefficient 
2n = 2.7×10

-17
 m

2
/W.  The length of the 

grating L = 2 cm and Bragg wavelength λB = 1550 nm 

were chosen [18].  We have considered the chalcogenide 

glass FBG because it reduces the required input intensity 

to observe nonlinear effects as compared to silica FBG due 

to high value of nonlinear Kerr coefficient 2n in such 

glasses.   

The plot of the transmitted intensity as a function of 

the input intensity is given in Fig. 1 for three different 

values of incident wavelengths such as λ = 1549.75 nm 

(Fig. 1a), λ=1549.80 nm (Fig. 1b), λ=1549.85 nm (Fig. 1c) 

and λ=1549.90 nm (Fig. 1d). All the incident wavelengths 

considered above are lying inside the stop band of the fiber 

Bragg grating. At low intensity these wavelength are 

reflected by the grating as a result the transmission of the 

structure is low. As the intensity of the input beam is 

increased the average refractive index of the grating will 

increases and the stop band appear to shift towards higher 

wavelengths side resulting in an increase in the 

transmission of those wavelengths which were reflected by 

the grating at low intensity. 
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Fig. 1. Transmitted vs. incident intensity for a nonlinear fiber 

Bragg grating for different values of detuning wavelengths. 
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It is observed from Fig. 1, that when the wavelength 

of the incident light is tuned deeper into the stop band 

(very near to the Bragg resonance, Fig. 1d) the transmitted 

intensity shows strong oscillatory behavior. The 

occurrence of oscillatory behavior can be explained as 

follows: It is well established that reflection spectrum of 

FBG shows the presence of multiple sidelobes with 

decreasing intensity located at each side of the stop band. 

These sidelobes originate from the weak reflections 

occurring at the two grating ends where refractive index 

changes suddenly compared to its value outside the grating 

region due to which a Fabry-Perot cavity with its own 

wavelength dependent transmission is formed.  As the 

input intensity increases the feedback path of the Fabry-

Perot cavity increases. As a result the phase shift of the 

incident light is increases due to self phase modulation. 

This causes the strong periodic sidelobes showing 

multistability in the transmission. Our observations are 

consistent with the stability analysis of Sterke [26] who 

suggested that at high excitation intensity there are many 

regions where the high transmission states are predicted 

due to temporal fluctuations which become chaotic. He 

found that as the wavelength of the incident beam is tuned 

deeper and deeper into the stopgap, the system tends to 

become more and more unstable giving rise to many stable 

and unstable states at the output. Multistable behavior in 

nonlinear fiber Bragg grating can also be considered in 

terms of many gap solitons formation inside the stopband 

of the grating [21-24]. In 1998 Broderick et al. [25] has 

observed experimentally five gap soliton at a particular 

input intensity when the wavelength of the incident beam 

is tuned inside the photonic bandgap of fiber Bragg 

grating. They suggested that the bistable switching is 

associated with the formation of gap soliton inside the 

grating.  

 

 

4. Conclusion 
 

We have investigated the phenomenon of optical 

multistabilty in nonlinear chalcogenide fiber Bragg grating 

by incorporating Kerr effect in the coupled mode analysis. 

The expression for the intensity dependent transmittivity is 

obtained by solving nonlinear coupled mode equations 

analytically for quasi-CW laser beam. The theory 

demonstrates that the optical multistability takes place 

when operating wavelengths are chosen inside the 

stopband of fiber Bragg grating at suitable incident 

intensity. We believe the present analytical study will be 

useful in future experimental work for the exploration of 

optical multistability in nonlinear fiber Bragg grating and 

for the development of nonlinear optical components for 

all-optical signal processing. 
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